comment
| - In probability theory, a Markov model is a stochastic model used to model randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
- У теорії ймовірностей, моделі Маркова це стохастичні моделі, які використовуються для моделювання систем, що випадково змінюються, де передбачається, що майбутні стани залежать тільки від поточного стану, а не від послідовності подій, які передували цьому (тобто, вона передбачає властивість Маркова). Як правило, це припущення дозволяє міркування і обчислення з моделлю, яка б в іншому випадку лишилась нерозв'язною.
- 마르코프 모형 또는 마르코프 모델은 확률 모델의 유형이다.
|
έχει περίληψη
| - In probability theory, a Markov model is a stochastic model used to model randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
- У теорії ймовірностей, моделі Маркова це стохастичні моделі, які використовуються для моделювання систем, що випадково змінюються, де передбачається, що майбутні стани залежать тільки від поточного стану, а не від послідовності подій, які передували цьому (тобто, вона передбачає властивість Маркова). Як правило, це припущення дозволяє міркування і обчислення з моделлю, яка б в іншому випадку лишилась нерозв'язною.
- 마르코프 모형 또는 마르코프 모델은 확률 모델의 유형이다.
|